General Constant Expressions for System Programming
Languages

Gabriel Dos Reis

Texas A&M University
gdr@cse.tamu.edu

Abstract

Most mainstream system programming languages provide sup-
port for builtin types, and extension mechanisms through user-
defined types. They also come with a notion of constant expressions
whereby some expressions (such as array bounds) can be evaluated
at compile time. However, they require constant expressions to be
written in an impoverished language with minimal support from the
type system; this is tedious and error-prone. This paper presents a
framework for generalizing the notion of constant expressions in
modern system programming languages. It extends compile time
evaluation to functions and variables of user-defined types, thereby
including formerly ad hoc notions of Read Only Memory (ROM)
objects into a general and type safe framework. It allows a program-
mer to specify that an operation must be evaluated at compile time.
Furthermore, it provides more direct support for key meta program-
ming and generative programming techniques. The framework is
formalized as an extension of underlying type system with a bind-
ing time analysis. It was designed to meet real-world requirements.
In particular, key design decisions relate to balancing experssive
power to implementability in industrial compilers and teachability.
It has been implemented for C++ in the GNU Compiler Collection,
and is part of the next ISO C++ standard.

Categories and Subject Descriptors D.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages, Standardization

1. Introduction

Modern high level programming languages typically feature a va-
riety of abstraction mechanisms to support popular programming
methodologies: object-based programming, object-oriented pro-
gramming, functional programming, generic programming, etc.
For system programming, however, the abstraction support is in-
complete. A distinctive trait of system programming is the ability to
describe data known at program translation time. Such data are usu-
ally denoted by so called constant expressions (C, C++, Java, etc.)
or static expressions (e.g. Ada). Furthermore, for embedded sys-
tems we typically need to describe data that should reside in Read
Only Memory (ROM). It is also common to need tables with non-
trivial structure that ideally are computed at compile time or link

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SAC ’10 March 22-26, 2010, Sierre, Switzerland

Copyright © 2010 ACM 978-1-60558-638-0/10/03. .. $5.00

Bjarne Stroustrup

Texas A&M University
bs@cse.tamu.edu

time to minimize startup costs and memory consumption. Main-
stream system programming languages, such as C and C++ do not
have standard, reliable, and systematic language features for ex-
pressing that. At best, values that must be known before run time
can only be expressed in an impoverished subset of a language and
must rely on non-standard conventions selectively implemented by
compilers.

We developed a general and formal model for compile time
evaluation that can be applied to provide compile-time evalua-
tion for a wide variety of programming languages. For space con-
straints, we will limit this paper to an informal presentation of that
framework. Our examples will be in C++ and some of our specific
language-technical design decisions reflect our experience with the
C++ language, implementation, use, and the C++ standards pro-
cess.

Consider a simple a jump table:

typedef void (*handler_t)();

extern void handler1();

extern void handler2();

const handler_t jumpTable[] = {
&handlerl, &hanlder2

};

Obviously we could place jumpTable in ROM — all the infor-
mation to do so is available. Indeed, some (but not all) production
compilers recognize such constructs and generate appropriate static
initialization. However, relying on conventions leads to brittle and
non-portable code, pushing programmers towards proprietary lan-
guages and language extensions.

The usual meaning of const object is an unchanging datum, a
value. However, that interpretation is insufficient to ensure that the
object is initialized in such a way it is placed in ROM. Consider:

double mileToKm(double x) { return 1.609344 * x; }

const double marks[] = {
mileToKm(2.3), mileToKm(®.76)
};

This defines the array object marks as unchanging, but there is no
guarantee that the values are computed at compile time. Indeed
since mileToKm() is a function, this will generate (redundant)
dynamic (run-time) initialization, that unfortunately ensures that
marks never ends up in ROM. ISO C++ [1] does not provide a
systematic and reliable way for the programmer to require that a
particular object must be evaluated at compile time or link time.

A workaround for this “permissive” const semantics is for pro-
grammers to use preprocessor macros, designed for token substitu-
tions, rather than general and type safe language mechanisms. For
example the function mileToKm may be replaced with the macro

#define MILE_TO_KM(M) ((M) * 1.609344)

However, preprocessor macros are brittle abstraction tools, fraught
with type, namespace, and scope problems. For example, assume
that two collaborating teams want to make sure that units of mea-
surement are not confused (potentially leading to catastrophic
crashes). An obvious solution would be to adopt a “typeful pro-
gramming” discipline using distinct classes/types to represent val-
ues of differing units. For instance, they may provide LengthInKM
and LengthInMile types so that the marks initialization could be
written:

const LengthInKM marks[] = {
LengthInKM(MILE_TO_KM(2.3)),
LengthInKM(MILE_TO_KM(0.76))
1

That looks good, but the use of the class LengthInKM with a
constructor brings back the problem with ROMability avoided
through the use of the macro MILE_TO_KM instead of the func-
tion mileToKm. Again, this may go unnoticed since the resulting
(dynamic initialization) code is correct from the C++ language
point of view. What we see here is a failure to support user-defined
type abstractions at the same level as builtin types. In reality, the
problem is worse because it forces programmers to avoid key facil-
ities of the C++ standard library and of embedded systems support
libraries.

The problems illustrated above are not specific to C or C++. They
are shared by all mainstream languages used for system program-
ming. Almost invariably, they define the notion of constant expres-
sion or static expression as an expression of builtin types (e.g. in-
tegers only) using only a restricted list of builtin operators (i.e. no
functions) and builtin constants. This paper proposes a methodol-
ogy to develop the notion of general constant expression applicable
to most modern system programming languages. The methodol-
ogy has been instantiated for C++, implemented in a version of the
GNU Compiler Collection, and has been accepted for the C++0x
draft standard. It introduces two notions:

e [iteral types: A literal type is one which is “sufficiently simple”
so that the compiler knows its layout at compile time (see §2.2).

e constexpr functions: A constexpr function is one which is “suf-
ficiently simple” so that it delivers a constant expression when
called with arguments that are constant values (see §2.1).

The “length example” can be written more clearly, type safe, and
without added run-time or space overheads in C++0x. We start by
defining a type LenghtInKM:

struct LengthInKM {
constexpr explicit LengthInKM(double d) : val(d) { }
constexpr double getValue() { return val; }

private:
double val;

1

The function with the same name as the class, LengthInKM is a
constructor; it specifies that a LengthInKM must be initialized by a
double-precision floating-point value.

The LengthInMile type is defined similarly, but has an additional
function, operator LengthInKM, that specifies a conversion from
LengthInMile to operator LengthInKM:

struct LengthInMile {
constexpr explicit LengthInMile(double d) : val(d) { }
constexpr double getValue() { return val; }
constexpr operator LengthInKM() {
return LengthInkKM(1.609344 * val);
}
private:
double val;
};

Given those two types our example shrinks to:

constexpr LengthInKM marks[] = {
LengthInMile(2.3), LengthInMile(0.76)
};

Obviously the representations of both classes LengthInKM and
LengthInMile are “sufficiently simple” for the compiler to “un-
derstand” — each is represented by a single value of the built-in
type double. All member functions are defined with the keyword
constexpr to ensure that the compiler checks that it can evaluate
their bodies at compile time. Obviously, these functions are “suffi-
ciently simple” for compile time evaluation.

We use two objects of type LengthInMile to initialize an array
marks of objects of type LengthInKM. Because marks is defined
with the keyword constexpr the construction and conversions are
all performed at compile time. The compiler will issue an error if
the initialization of a constexpr object is dynamic. The notion of
constant expression is no longer limited to a handful builtin types
and operations, but also applies to user-defined types and functions.
Critically, the rules for compilation and evaluation are simple for
both compilers and users.

The rest of this paper is structured as follows. Section 2 introduces
the notion of literal types, constexpr functions, and discusses some
of the pitfalls that need to be avoided. Then §3 considers recur-
sive constexpr function. Section 4 consider extensions to functions
taking parameters by reference; then §5 considers interaction with
object-oriented facilities (e.g. inheritance, virtual functions). Fi-
nally we highlight related works in §6 and conclude in §8. Fine
points and technical aspects of the design are made precise in a de-
tailed static semantics following a natural semantics style [3] pre-
sentation contained in a much longer technical report.

2. Constant Expressions

We start with the notion of a constant expression as it has appeared
in C++ from its inception. From that, we proceed through a se-
quence of generalizations.

In some contexts — such as array bounds — an expression is re-
quired to evaluate to a constant. A constant expression is either
a literal, a relational expression the sub-expressions of which are
constant expressions, an arithmetic expression of type int whose
sub-expressions are constant expressions, or a conditional expres-
sion whose sub-expressions are all constant expressions. The name
of global variables defined with the const keyword and initialized
with constant expressions also evaluates to a constant expression.
For example

const int bufsz = 256 * 4;
int main(Q) {
int buffer[bufz] = { 0 };
/] ...
}

This definition of constant expression in C++ [1] is quite conven-
tional. In particular, a call to a (user-defined) function with constant
expression arguments is never considered a constant expression.
For example:

// bufsz is constant 1024

int round_up(double x) { return int((x+x)/2); }

int buf[round_up(0.76)]; // error

The call round_up (0. 76) is not considered a constant expression,
even though recent extensions to C allow floating-point values to
participate in constant expression evaluation.

2.1 Constexpr functions

Our first generalization modifies the notion of constant expression
so that a call to a “sufficiently simple” function with constant

expression is a constant expression, e.g. one that can be evaluated
at compile time. A constexpr function is a function the definition of
which has the following characteristics:

e its return type, and the types of its parameters (if any), are literal
types (see §2.2). For concreteness, literal types include bool,
int, or double;

e its body is a compound statement of the form
{ return expr; }

where expr is such that if arbitrary constant expressions of
appropriate types are substituted for the parameters in expr, then
the resulting expression is a constant expression as defined in
introductory paragraph of §2. The expression expr is called a
potential constant expression.

For example, the function mileToKm from §1 is a constexpr func-
tion but the following is not

int next(int x) { return x = x + 1; }

because it uses the the assignment operator.

We now extend the notion of constant expression as follows. A
constant expression is an expression of scalar type and of the
following form:

1. aliteral,

2. aname that denotes a global variable of scalar type defined with
const and initialized with a constant expression,

3. arelational expression involving only constant sub-expressions,

4. an arithmetic expression of scalar type involving only constant
sub-expressions,

5. a conditional expression of scalar type involving only constant
sub-expressions,

6. a call to a constexpr function with constant expression argu-
ments.

In principle, a compiler can infer from a function definition whether
it is constexpr or not. However, for ease of use and ease of imple-
mentation, we require that a constexpr function definition be pre-
ceded by the keyword constexpr. The intent is that at the point
of definition, the compiler should validate that indeed a function
definition satisfies all conditions to be eligible, as expected by the
programmer. The early checking offered by this requirement is es-
pecially useful in large scale programming where programs are as-
sembled from several libraries and third party components. Here
are some examples of constexpr functions

constexpr int square(int x) { return x * x; } // OK
constexpr int int_max() { return 2147483647; } // OK

constexpr int isqrt_helper(int sq, int d, int a) { // OK
return sq <= a ? isqrt_helper(sq+d,d+2,a) : d;

}

constexpr int isqrt(int x) {
return isqrt_helper(1,3,x)/2 - 1;
1

The handling of recursive function is discussed in §3.

It is not an error to call a constexpr function call with non-constant
arguments in a context where a constant expression is not required;
the expression is to be evaluated at run time. The alternative would
be to double the number of functions (one for constant expression
evaluation and one for run-time evaluation). That would not be
viable in real-world code. Another practical concern addressed
by this design is that a compiler need only store the body of a
constexpr function for potential evaluation. This is important for

// OK

the compilation of large programs. Basically, constexpr functions
define a functional sub-language. For simplicity, we exclude loops
and everything else in C++ that require more than an expression.
This reflects our design goal of a simple, yet powerful type system
extension.

The strictness of the constexpr function rule, just happens to be
valuable to optimizers even if a call to a constexpr function does
not involve constant expressions. In particular, that a constexpr
function is side-effect free (“pure”).

2.2 Literal Types

Limiting constexpr functions to receive and return only values of
builtin types is useful, but still restricts the programmer to expres-
sions of (builtin) scalar types. This goes against the principle that a
high level language should support user-defined types just as well
as builtin types, so as to allow general use of the type system. A
literal type is

e ascalar type, or

e a class with all data members of literal types, and a constexpr
constructor.

A constexpr constructor is just like a constexpr function, except
that it must initialize the data members in the member-initializer
part and those initializations must involve only potential constant
expressions, and its body is empty. The restriction on the body is
quite natural for the kind of types people most often want in ROM.
Here is an example

struct complex {
constexpr complex(double x = 0, double y = 0)
:re(x), im(y) { }
constexpr double real() { return re; }
constexpr double imag() { return im; }

private:
double re;
double im;
};

It is often stated that a datatype like complex should be built into
the language just like int for reasons of efficiency. We contend
that once we modify our notion of constant expression to include
objects of literal types initialized with constant expressions, then
the class complex provides a datatype just as efficient as if it were
made builtin. In particular, we can define:

struct imaginary {
constexpr explicit imaginary(double z) : val(z) { }
constexpr operator complex() { return complex(0.0,val);
private:
double val;
};
constexpr imaginary I = imaginary(1l.0);
This provides the classic imaginary unit I just as efficiently and
notationally cleanly as if it were hardwired into the language.
To turn complex into a full blown user-defined arithmetic type with
the usual arithmetic operations, we need to extend the notion of
constexpr function to member functions. Member functions have
a hidden (pointer) parameter: In C++, this parameter is called “the
this pointer.” For each call, this points to the object on which the
member function is invoked. That is, the definitions of real () and
imag () are equivalent to:

constexpr double real() { return (*this).re; }
constexpr double imag() { return (*this).im; }

We don’t propose to handle pointers in general at compile time.
However, the restricted form of the this pointer means that we
can deal with it as long as we can cope with member selection.
Handling class object member selection is easy: if the object is of

literal type and created with constant expressions arguments to the
constructor, then it is clear that all its components are constant val-
ues. Also, all fields correspond to offsets known at compile time.
Consequently, the compiler can evaluate a field member selection
of such an object at compile time. Next, if a member function
of a class x is defined with the constexpr keyword, and would
have been a constexpr function (as defined in §2.1) if the expres-
sion *this is replaced by an arbitrary constant expression of type
X, then that member function is considered a member function.
For example complex::real and complex: :imag are constexpr
member functions.

We can now summarize our notion of general constant expression
and illustrate its effectiveness. A constant expression is an expres-
sion of literal type of the following form:

1. aliteral,

2. a name that denotes a global variable of literal type defined
with the keyword constexpr or const and initialized with a
constant expression,

3. an object created by a constexpr constructor with constant ex-
pression arguments,

4. a member selection of a constant expression of literal class type
or array of constant expressions,

5. arelational expression involving only constant expression sub-
expressions,

6. an arithmetic expression of scalar type involving only constant
expression sub-expressions,

7. a conditional expression of scalar type involving only constant
sub-expressions,

8. a call to a constexpr function or constexpr member function
with constant expression arguments.

This general notion of constant expression is simple. It is merely
a recursive definition based on composition of built-in types and
built-in operators. However it is powerful enough to turn a user-
defined datatype such as complex into one that delivers the same
efficiency as a built-in type. In particular, the usual arithmetic
operations may be defined as follows:

constexpr complex operator+(complex x, complex y) {
return complex(x.real()+y.real(), x.imag(Q+y.imag(Q));
}
constexpr complex operator®(complex x, complex y) {
return complex(x.real()*y.real() - x.imag()*y.imag(),
x.realQ*y.imag() + x.imag(Q)*y.imagQ));
}

This allows us to handle the types that are most frequently con-
sidered for placement in ROM and for which the highest number
of objects are needed. Our aim is not to support arbitrary object
creation and object manipulation at compile-time, but to provide
simple support for objects and operations for which the distinction
between run-time and compile-time evaluation matters. If you want
more, we observe that what we provide is obviously Turing com-
plete.

2.3 Static Initialization and Phase Distinction

General evaluation of expressions at compile time is tricky; espe-
cially for system programming languages. Indeed, one has to be
careful and distinguish between entities that are fully defined or
known only at different phases: compile time, link time, and run
time. For example, the addresses of global variables are not known
until link time. That limits the kind of static initialization that can
be performed and used by the compiler before link time. For exam-

ple C and C++ do not allow the following (assume that the variables
are defined at top level)

const int n = 42;

const int p = (int)&n; // dynamic initialization
int array[n] = { }; // OK, n is constant

int ary[p] = { }; // error: p is not constant

This is because the address of the variable n is not known until link
time, therefore cannot be considered a constant expression. Exam-
ples, such as these makes programmers ask for a guarantee that cer-
tain initializations are compile-time evaluated. Using constexpr
as part of a variable definition achieves that. For example:

constexpr int n = 42; // OK
constexpr intptr_t p = (intptr_t)&n; // error
const intptr_t q = (intptr_t)&n; // OK; dynamic init.

constexpr complex z = I; // OK

constexpr double d = z.real(); // OK

constexpr double e = sqrt(3.14); // error

const double f = sqrt(3.14); // OK; dynamic init.

The standard library square root function, sqrt, is not a constexpr
function so the rather innocent-looking initialization of e is an
error.

It has been argued that no such compile-time initialization guar-
antee is necessary and we can rely on the programmers and the
compilers to “do the right thing.” Experience shows that for large
number of programmers dealing with large programs using multi-
ple compilers that argument simply isn’t true. Plain C++ const is
not enough, exactly because it does not offer that guarantee — it is
too flexible for some important uses.

3. Handling Recursion

By allowing recursive constexpr functions we open the possibility
for a compiler to enter an infinite loop. In particular, the type system
is not decidable anymore. However, there are several ways to admit
recursion while preventing infinite loops. One way is to restrict the
definition is such a way that termination is always decided by the
syntactic structure of the function. However, for C++ that would
just add complexity to the syntax without providing significant
benefits. Recursion at compile time is already common in C++
programs and recursive function calls can be handled using existing
techniques.

C++ programmers are comfortable with the idea that a compiler
may reject their programs not because its capacities are exceeded.
In C++ [1], one can already write

template<int n>
struct Fact {
enum { Value = n * Fact<n-1>::Value };

};

template<>
struct Fact<®>
enum { Value

b

-

1}

constexpr int f5 = Fact<5>::Value;

Such constructs are popular, but they are indirect expressions of
ideas so they constitute a barrier for understanding and mainte-
nance. As a data point, we proposed an early version of constexpr
(for C++0x) without recursion, but that led to many requests for that
feature, complete with real-world constant expression use cases.
Consequently, we directly support recursive constexpr functions.
They bring clarity, and impose no additional burden on program-
mers. For example, we can simplify the example above to:

constexpr int fac(int n) {
return n == 1 ? 1 : n*fac(n-1);

3

constexpr int f5 = fac(5);

We stress that our framework still beneficial for a language that
elects to restrict allow recursions at compile time.

4. Supporting References Parameters

In this section we examine what it takes to allow a constexpr
function with reference parameters. This issue is of importance to
a system programming language that also supports object oriented
programming or generic programming.
Reference parameters are conventionally implemented as pointers
to objects, so their evaluation at compile time is quite tricky. In gen-
eral, it’s impossible without using a full interpreter. In particular, we
need to maintain phase distinction, avoid the problems mentioned
in §2.3, and keep the compiler small and fast.
The C++ programming language has an eager dynamic semantics
with two modes of parameter passing: pass-by-value, and pass-by-
reference. The pass-by-value mode makes a copy of the argument
into a temporary variable (the parameter), so that evaluation of ex-
pressions are insensitive to object location. The pass-by-reference
mode works by binding the address of the argument object to the
parameter. Since the address of an object is not known until link
time or run time, we have to be cautious when attempting to evalu-
ate an expression at compile-time.

Consider a simple example:

template<class T>
constexpr T max(const T& a, const T& b) {
return (a > b) ? a : b;

}

constexpr double d = max(one_val,another_val);

First, note that as in the case of constant expression of literal type,
we don’t really need to know the address of the object. Rather,
all we need to know is the value the reference (or dereference)
evaluates to. If that value is a constant expression, and no other
part of the expression is sensitive to the addresses, then it is safe to
do a substitution at compile time. That is precisely how we extend
the notion of constexpr function to include functions with reference
parameters. So, here is our revised definition of constexpr function:
a function is said constexpr if

e it is defined with the constexpr keyword,
e its return type is a literal type,

e each parameter in the parameter list (if non-empty) is of literal
type, or a reference to a literal type,

e its body is a compound statement of the form
{ return expr; }

where expr is a potential constant expression.

This definition is sufficient to guarantee that there is no difference
between the value produced by a runtime evaluation and a compile
time evaluation.

This technique for handling references applies for far larger subset
of C++ (including some uses of the new operator) than what we
needed for the practical problems that motivated this work.

In what circumstances would a programmer ever want to define
a constexpr function with parameters of reference types? First, in
C++, for most generic (template) functions (such as max above),
people declare function parameters with const reference type as
there is no general reliable mechanism to select generically the ar-

gument passing mode based on the type of the argument. Second,
some languages such as Java rely extensively on pass-by-reference
semantics. It is therefore important to know that with sufficiently
natural restriction, the framework applies. Third, most C++ stan-
dard library functions (e.g. std::abs, std::main, std: :max,
etc.) are defined generally as taking const reference parameters.
If we don’t handle them, then programmers would invent brittle
workarounds, leading to code duplications, fraught with all sorts
of traps. Fourth, in C++, there are some situations where there is
no choice but to use a const reference for the parameter in or-
der to preserve as much type information as possible that would
participate in the computation of the constant value. A concrete ex-
ample is when one attempts to pass an array to a function. In C and
C++, an array object as argument in pass-by-value mode automati-
cally decays to the address of the first object, which loses the array
length information. A classic way to preserve the array length in-
formation is to declare that the array is to be passed by reference,
as exemplified by the following classic program fragment:

template<typename T, int N>
constexpr int length(const T(&ary)[N]) { return N; }

Here the parameter ary is declared to be a reference to an array
of type const T[N] where T and N are the template parameters.
When called as in

const int grades[] = { 20, 10, 13, 3 };

int main(Q) {
return length(grades); // OK: returns 4
}

the template parameter T is bound to int, and the parameter N is
bound to 4 (the length of grades). Note that this function is very
convenient for retrieving length of statically initialized array.

5. Object Orientation

In this section we discuss interactions between object oriented
features and constant expressions of user-defined types that may
involve inheritance and virtual function (or dynamic dispatch).
Since our primary goal is to support, at the language level, compile-
time evaluation of constant expressions of user-defined types, why
bother with object-oriented features which typically involve run-
time semantics? Well, inheritance and dynamic dispatch are impor-
tant in all languages deemed “object oriented.” Thus, it is an ad-
vantage that under appropriate appropriate conditions, our method-
ology still applies so that a choice of an object-oriented techniques
does not automatically implies poor support for constant expression
evaluation. In fact, some simple object-oriented techniques can be
used to simplify constant expression code.

Support for object-oriented programming tends to depend on the
programming language’s object model. For concreteness, we will
use the C++ object model, which supports combinations of single
inheritance, multiple inheritance, and virtual inheritance. In both
the single inheritance and multiple inheritance case, the offsets of
data members are known at compile time so the discussion in §2.2
carries verbatim. The only natural restriction is that all base classes
should be literal types. For example, in C++0x we can factor out
the common parts of LengthInKM and LengthInMile into a base
class:

struct Length { // no unit
constexpr explicit Length(double d) : val(d) { }
constexpr double getValue() { return val; }
private:
double val;
};

This base class can be used in the obvious way:

struct LengthInKM: Length {
constexpr explicit LengthInKM(double d)
: Length(d) { }
1

struct LengthInMile: Length {
constexpr explicit LengthInMile(double d)
: Length(d) { }
constexpr operator LengthInKM() {
return LengthInKM(1.609344 * getValue());
}
b

Our user code is unchanged:

constexpr LengthInKM marks[] = {
LengthInMile(2.3), LengthInMile(0.76)
1

We will not discuss virtual bases because we have never seen an
example where they would benefit from compile time evaluation.

6. Related Work

Most of the related work is found in the definition of real program-
ming languages for system programming such as Ada [7] and C++
[1]. Our design for general constant expressions can be understood
as a carefully developed instance of partial evaluation [9, 2, 4], built
into the type system of an existing programming language that has
been under intense industrial use for nearly three decades. There
is a huge body of work done by the partial evaluation community,
with a dedicated conference. Our work aims at simple and gen-
eral types rules — easily understood by programmers and compiler
implementors — that guarantee a specific level of effective par-
tial evaluation of programs across all compilers. This contrasts to
relying on un-annotated programs or on the quality of compilers
and optimizer. Compile-time evaluation of user-defined functions
has been part of the Lisp macro system. Its usage requires care-
ful explicit annotation for the three-binding times found in Lisp:
translation-time, load-time, and run-time. Our work aims at sim-
plicity, ease of use, and ease of implementation. It guarantees func-
tion inlining and constant folding [6] in a wide range of contexts.
Our design presents a simple coherent set of rules, as opposed to
building seperate metalanguage on top of the existing programming
language [5]. It requires only a careful semantics extension of ex-
isting types.

7. Acknowledgment
This work was partly supported by NSF grant CCF-0702765.

8. Conclusion

We have presented an effective general methodology to extend the
notion of constant expressions found in major system programming
languages to include user-defined types and user-defined (possibly
recursive) functions. The result offers more reliable semantics for
formerly ad hoc notions of ROM. This form of constant expres-
sions can also be seen as explicit programmer-supplied annotations
to guide offline partial evaluation, therefore opening up more op-
portunities for constant propagations, easing data dependence anal-
ysis and possible parallelization. The framework presented in this
paper can be extended to include a streamlined effect type and sys-
tem [8] to allow imperative constructs are long as the effects are
local and not reflected in the outcome of the evaluation. This paper
has focused on the vast majority of practical needs of compile time
evaluations.

References

[1] International Organization for Standards. International Standard
ISO/IEC 14882. Programming Languages — C++, 2nd edition, 2003.

[2] Neil Jones, Carsten Gomard, and Peter Sestoft. Partial Evaluation
and Automatic Program Generation. Prentice Hall International, June
1993.

[3] Gilles Kahn. Natural Semantics. In STACS ’87: Proceedings of the 4th
Annual Symposium on Theoretical Aspects of Computer Science, pages
22-39, London, UK, 1987. Springer-Verlag.

[4] J. Koop and O. Riithing. Constant propagation on predicated code.
9(8):829-850, 2003.

[5] Sean Seefried, Manuel Chakravarty, and Gabriele Keller. Optimising
Embedded DSLs Using Template Haskell. In In Proceedings of the 3rd
International Conference on Generative Programming and Component
Engineering, pages 186-205, Vancouver, BC Canada, 2004. Springer-
Verlag.

[6] Bjarne Stroustrup. The Design and Evolution of C++. Addison-
Wesley, 1994.

[7]1 S. Tucker Taft, Robert A. Duff, Randall L. Brukardt, and Erhard
Ploederer, editors. Consolidated Ada Reference Manual, volume 2219
of Lecture Notes in Computer Science. Springer, 2000.

[8] Jean-Pierre Talpin and Pierre Jouvelot. The Type and Effect Discipline.
Inf. Comput., 111(2):245-296, 1994.

[9] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with
conditional branches. ACM Trans. Program. Lang. Syst., 13(2):181—
210, 1991.

